All LiDAR systems work on the principle of time of flight (ToF), which measures distance between its sensor and target based on the time it takes light to be reflected back. While conventionally LiDAR is associated with aircraft, at the highest level, LiDAR can be broken down into two categories, those scanners that are airborne, and those that are terrestrial.
Airborne LiDAR— Airborne usually means the LiDAR sensor is mounted to a small airplane or a helicopter. But recent advancements have introduced drones, or unmanned aerial vehicles (UAVs), as viable vehicles for LiDAR, significantly reducing costs associated with many applications. Satellites are also another more sophisticated platform for launching LiDAR data collection.
Airborne alternatives allow for a wide range of ways to execute projects. UAVs combined with terrestrial LiDAR data can help to reduce costs over more expensive airplanes and helicopters. Aircraft can scan wider areas that are simply too large to be feasible for UAV. And while satellites are the most expensive option, they can be used to map large areas of vegetation (and subsequently changes in vegetation), more frequently than aircraft could, so satellites can supply the most up to date data with the greatest frequency. Data coming from aircraft surveying the same area could take years, and risk collecting data that quickly becomes outdated.
Terrestrial LiDAR — Terrestrial LiDAR is a ground-based alternative to airborne LiDAR. Commonly, it’s a device that sits atop a stand sending pulses of light outward horizontally, used to precisely measure land reliefs and dimensions of technical structures. Terrestrial LiDAR is commonly confused with Terrestrial laser scanning (TLS). Whereas LiDAR measures the distance to a point, TLS scans an area in a sweeping motion to capture a relief of a space.